Magnétodynamique

La magnétodynamique (en anglais magnetodynamics) correspond au calcul de la distribution du champ (ou de l’induction) magnétique et des courants induits produits par des courants variables dans le temps et/ou par des sources en mouvement (aimants ou courants).

Considérons un domaine $\Omega$ de $\mathbb{R}^3$ comportant un sous-domaine $\Omega_c$ conducteur électrique, dont la frontière $\Gamma (=\partial\Omega)$ est comme précédemment divisée en deux morceaux $\Gamma_d$ et $\Gamma_n$.

Les équations qui nous concerneront seront :

  • Les équations de Maxwell : $$\left\{\begin{aligned}\text{div}\,{\bf b} &= 0\\{\bf rot}\,{\bf h} &= {\bf j}~\text{dans } \Omega_{c}, \text{ et } {\bf 0} \text{ ailleurs}\\{\bf rot\,e} &= -\frac{\partial\,{\bf b}}{\partial t} ~\text{dans }\Omega_c\end{aligned}\right.$$
  • Les lois de comportements : $$\left\{\begin{aligned}{\bf b} &= \mu\,{\bf h}&\text{dans }\Omega\\{\bf j} &= \sigma\,{\bf e} &\text{dans~}\Omega_c\end{aligned}\right.$$
  • Les contions aux limites, par exemple :
    • continuité de la composante normale de l’induction : ${\bf n}\cdot{\bf b} = 0$ sur $\Gamma_d$ ;
    • continuité de la composante tangentielle du champ : ${\bf n}\wedge{\bf h} = {\bf 0}$ sur $\Gamma_n$.

Formulation forte

Le potentiel vecteur magnétique ${\bf a}$ est défini comme précédemment et donc ${\bf b} = {\bf rot\,a}$. En le repportant dans l’équation de Maxwell-Faraday, on obtient : $${\bf rot}\,\left({\bf e}+\frac{\partial\,{\bf a}}{\partial t}\right) = {\bf 0}$$.

On peut donc définir dans $\Omega_c$ un champ scalaire $v$, potentiel scalaire électrique tel que ${\bf e}-\frac{\partial\,{\bf a}}{\partial t} = - {\bf grad}\,v$, soit : $$ {\bf e} = -{\bf grad}\,v - \frac{\partial\,{\bf a}}{\partial t}$$

Et finalement, l’équation de Maxwell-Ampère dans $\Omega_c$ donne : $${\bf rot}\,\left( \mu^{-1}{\bf rot\,a}\right) = \left\{\begin{aligned}-\sigma\left({\bf grad}\,v + \frac{\partial\,{\bf a}}{\partial t}\right) ~ &~\text{dans }\Omega_c\\{\bf 0}~ &~\text{ailleurs}\end{aligned}\right.$$

La deuxième relation permettant de résoudre est la conservation de la densité de courant dans $\Omega_c$ : $$\text{div}\left( \sigma\left({\bf grad}\,v + \frac{\partial\,{\bf a}}{\partial t}\right)\right) = 0$$

Les conditions aux limites sont analogues à celles vues en magnétostatique ou électrocinétique.

Formulation faible

En combinant les différentes approches vues dans les sections précédentes, on en déduit la formulation faible complète du problème, dite $({\bf a},v)$ :

Trouver ${\bf a} \in \textbf{H}_{0}({\bf rot},\Omega) = \{ {\bf a} \in \textbf{H}({\bf rot},\Omega) : {\bf a}\wedge{\bf n}|_{\Gamma_{d}} = 0\}$ et $v \in \text{H}_{0}({\bf grad},\Omega) = \{ u \in \text{H}({\bf grad},\Omega) : u|_{\Gamma_{di}} = v_i\}$, tels que :

$$\left\{\begin{aligned}\left(\mu^{-1}\,{\bf rot}\,{\bf a}\,,\,{\bf rot}\,{\bf a’}\right)_{\Omega} + \left(\sigma\,\partial_t\,{\bf a}\,,\,{\bf a’}\right)_{\Omega_c} + \left( \sigma\,{\bf grad}\,v \,,\, {\bf a’}\right)_{\Omega_c} = 0,~ ~\forall\,{\bf a’} \in \textbf{H}_{0}({\bf rot},\Omega) \\ (\sigma\,{\bf grad}\,v \,,\, {\bf grad}\,v’)_{\Omega_c} + (\sigma\,\partial_t\,{\bf a} \,,\, {\bf grad}\,v’)_{\Omega_c} = 0,~ ~\forall\, v’ \in \text{H}_{0}({\bf grad},\Omega)\end{aligned}\right.$$