Magnétoharmonique

Dans le cas particulier où les sources sont en régime sinusoïdal forcé de pulsation $\omega$, nous pourrons utiliser la transformation complexe vue dans le chapitre 1 et résoudre directement en complexe : c’est ce qu’on appelle la magnétoharmonique (certains l’appellent « magnétostatique complexe »).

La formulation faible à résoudre est alors :

Trouver $\underline{\bf a} \in \textbf{H}_{0}({\bf rot},\Omega) = \{ \underline{\bf a} \in \textbf{H}({\bf rot},\Omega) : \underline{\bf a}\wedge{\bf n}|_{\Gamma_{d}} = 0\}$ et $\underline{v} \in \text{H}_{0}({\bf grad},\Omega) = \{ \underline{u} \in \text{H}({\bf grad},\Omega) : \underline{u}|_{\Gamma_{di}} = \underline{v_i}\}$, tels que :

$$\left\{\begin{aligned}\left(\mu^{-1}\,{\bf rot}\,\underline{\bf a}\,,\,{\bf rot}\,\underline{\bf a'}\right)_{\Omega} + \left(\sigma\,j\omega\,\underline{\bf a}\,,\,\underline{\bf a'}\right)_{\Omega_c} + \left( \sigma\,{\bf grad}\,\underline{v} \,,\, \underline{\bf a'}\right)_{\Omega_c} = 0,~ ~ \forall\,\underline{\bf a'} \in \textbf{H}_{0}({\bf rot},\Omega) \\ (\sigma\,{\bf grad}\,\underline{v} \,,\, {\bf grad}\,\underline{v'})_{\Omega_c} + (\sigma\,j\omega\,\underline{\bf a} \,,\, {\bf grad}\,\underline{v'})_{\Omega_c} = 0,~ ~ \forall\, \underline{v'} \in \text{H}_{0}({\bf grad},\Omega)\end{aligned}\right.$$

L’implantation dans GetDP n’est pas plus compliquée que ce que nous avons vu jusqu’à présent. Le passage en complexe et la fréquence associée sont précisés dans la partie « Résolution » :

Resolution {
  { Name MagnetoHarmonique_2D;
    System {
      { Name A; NameOfFormulation MagnetoHarmonique_2D;
			Type ComplexValue; Frequency freq;
      }
    }
    Operation {
      Generate[A];
      Solve[A]; 
      SaveSolution[A];
    }
  }
}

Et la multiplication par $j\omega$ dans la formulation peut-être faite (au choix) :

  • directement via un terme Complex[0,1]*2*Pi*freq dans les expressions ;
  • ou en utilisant DtDof qui permet de définir une dérivée temporelle des degrés de liberté.

Applications

Barre cylindrique

À titre d’exemple, je vous propose de résoudre numériquement l’exercice sur la barre cylindre alimentée en alternatif.

Le modèle est téléchargeable ici .

Observer l’effet de peau ainsi que l’évolution de la résistance du conducteur en fonction de la fréquence :

“J efficace dans barre” “J efficace dans barre”

“Résistance en fonction de la fréquence” “Résistance en fonction de la fréquence”

Câble triphasé

Modifier les programmes précédents afin de modéliser une ligne triphasée et observer l’effet de proximité à 50 Hz :

“J efficace dans cable triphasé” “J efficace dans cable triphasé”